ウレタンゴム系塗膜防水通気緩衝工法の耐風性能

その5 防水層の内部圧力に及ぼす脱気筒と防水仕様の影響

ウレタンゴム系塗膜防水	耐風性能	負圧
通気緩衝シート	脱気筒	

1. はじめに

前報¹⁻²⁾では、JASS 8 T-501「メンブレン防水層の性能 評価試験方法」の 3.7 に規定される圧力箱式耐風試験に準 じ、ウレタンゴム系塗膜防水通気緩衝工法の耐風性能を 評価した結果、脱気筒設置により防水層の上下部で等圧 となり、下地からのふくれが抑制されることを報告した。

本報では、陸屋根防水層に作用する風圧の影響を模擬 するため、小型試験体を用いてポンプによる減圧や脱気 筒への送風(水平方向)を行い、防水層内の圧力状態の 確認と脱気筒の効果について検証した結果を報告する。

2. 実験

2-1 試験体

表1 試験体の防水仕様

試験体 A ウレタン	試験体 B アスファルト*		
プライマー(0.2kg/m ²)	プライマー(0.2kg/m²)		
1 液湿気硬化型ウレタン	アスファルトプライマー		
通気緩衝シート	砂付あなあきルーフィング		
自着ストライプ粘着層	JIS A 6023		
ウレタン防水材(3mm)	ストレッチルーフィング		
JIS A 6021 高伸長形	JIS A 6022		
仕上塗料(0.2kg/m ²)	アスファルトルーフィング		
2 液型アクリルウレタン	JIS A 6005		
	砂付ストレッチルーフィング		
	JIS A 6022		
※試験体 B のルーフィング層間は防水工事用アスファルト			

(1.0kg/m²: JIS K 2207) にて流し張りした.

Wind resistance performance of polyurethane waterproofing membranes with ventilation cylinders.

Part.5 Influences of ventilating cylinders and waterproofing specification for internal pressure of membranes.

正会員	○田中秀斉*	同	島村浩行*
同	工藤 勝*	同	鈴木 博*
同	輿石直幸**		

通気路(体積^{**2}:約160cm³/m²) 通気路(体積^{**2}:約962cm³/m²) → 粘着材 (厚さ:0.5mm)

2-2 実験方法

2-2-1 減圧による防水層内の圧力の状態(実験①)

脱気筒 X を密閉し、脱気筒 Y から減圧ポンプにて、所 定の圧力(-1、-3、-5、-10kPa)まで減圧し、防水層内の 圧力を測定した。その後、減圧ポンプの出力を変えずに 吸引を継続し、脱気筒 X を開放して圧力が安定した時点 で防水層内の圧力を測定した。

2-2-2 脱気筒への送風(水平)による防水層内の圧力変化

脱気筒 Y に風速 10、20、30 m/sec の風(水平方向)を 脱気筒 X に当たらないよう送風し、防水層内の圧力を測 定した。脱気筒 X は密閉条件(実験②)と開放条件(実 験③)で試験を行った(図2送風試験概略図参照)。

3. 実験結果

3-1 実験① 減圧による防水層内の圧力の状態

脱気筒 X を密閉し、所定の圧力まで減圧したところ、 防水層内の圧力は、脱気筒 X と中央とも脱気筒 Y の圧力 と等しく一定であった。

その後、脱気筒 X を開放すると、その直下の圧力はほ ぼ外気圧に戻り、脱気筒 Y の直下の圧力は低下した。そ の圧力勾配は距離に対してほぼ直線的な関係となった。 試験体 A ウレタンは、試験体 B アスファルトに比べ、圧 力勾配が大きい(図 4、図 5 参照、X:0mm、Y:210mm)。

TANAKA Hidehito, SHIMAMURA Hiroyuki, KUDOU Masaru, SUZUKI Hiroshi, KOSHIISHI Naoyuki

3-2 脱気筒への送風(水平)による防水層内の圧力変化 3-2-1 実験②(脱気筒 X:密閉、脱気筒 Y:送風)

脱気筒Xを密閉した状態では、脱気筒 Y からの距離並 びに試験体に関わらず防水層内部全体の圧力は、ほぼ均 ーになった。脱気筒 Y に送る風速が大きいほど、防水層 内の圧力は低くなった(図6、図7)。

風速が同じ条件では、試験体 A ウレタンは、試験体 B アスファルトに比べ圧力低下が大きかった。この違いは、 「通気緩衝層内の空隙量」に起因し、防水層内の体積が 大きいほうが減圧されにくかったと考えられる(各試験 体の通気路体積は図2参照)。

図6 風速と圧力分布:密閉系 図7 風速と圧力分布:密閉系 (試験体Aウレタン) (試験体 B アスアファルト)

3-2-2 実験③(脱気筒 X:開放、脱気筒 Y:送風)

脱気筒 X を開放し、脱気筒 Y に水平方向から風を送る と、両試験体とも、脱気筒 X 直下の差圧はほぼ 0kPa に近 いが、脱気筒 Y 直下の圧力は低下し、通気層内は減圧状 態になった。風速が大きい場合ほど、より減圧された。 脱気筒 Y からの距離と圧力の関係はほぼ直線であり、そ の勾配は試験体 B に比べ試験体 A のほうが大きかった (図 8、9 参照)。脱気筒 X を密閉した実験②と比べ、脱 気筒 X を開放すると Y 直下の圧力はやや減圧が緩和した。

図8風速と圧力分布:開放系 (試験体 A ウレタン)

(試験体 A アスファルト)

脱気筒 X 開放の実験①及び③の結果における試験体 A と試験体 B の圧力勾配の差異は、通気性能の影響と考え られる。そこで、両試験体において、脱気筒 Y に流量計 を設置し、所定の圧力まで脱気筒 X から減圧した状態で 空気流量を測定した。

久試験休の空気法量 圭っ

表2 各試験体の空気流量			単位:L/m	in
内部圧力	-1 kPa	-3 kPa	-5 kPa	-10 kPa
試験体 A ウレタン	87	362	358	514
試験体Bアスファルト	165	484	648	967

試験体 A ウレタンは試験体 B アスファルトに比べ、ど の設定圧力においても空気流量は少なかった。実験①と ③の結果で試験体 A ウレタンの内部圧力が低いのは脱気 筒 X からの空気の流入量が少ないためと考えらえる。

4. まとめ

- (1) 脱気筒 X を密閉し、脱気筒 Y を減圧または送風した 実験(①と②)の結果より、減圧または送風によって 通気層内は減圧され、減圧または風速が大きい場合ほ ど通気層内の圧力はより低下した。この減圧効果は通 気層内の空気量が少ないほうが顕著であった。
- (2) 脱気筒 X を開放し、脱気筒 Y を減圧または送風した 実験(②および③)の結果より、脱気筒 X 直下はほぼ 外気圧に戻り、脱気筒 Y 直下は減圧または風速が大き い場合ほど通気層内の圧力はより低下した。このとき の圧力勾配は、通気層内の空気流量が少ない試験体の ほうが大きく、減圧効果が顕著であった。

5. 今後について

脱気筒の数や形状も内部圧力分布に影響すると考えら れるため、検証試験の結果を次報その6で報告する。

く参考文献>

1-2) 野々直行、島村浩行、鈴木博、工藤勝、輿石直幸: ウレタンゴム系塗膜防水通気緩衝工法の耐風性能、その3 端末処理方法の影響 (pp.1233-1234)、その 4 通気路内の 圧力の影響(pp.1235-1236)、日本建築学会大会学術講演 梗概集(近畿)、2014年9月

*Japan Urethane Waterproofing Industry Association **Waseda University Prf. Dr.Tech

^{*}日本ウレタン建材工業会

^{**}早稲田大学 教授 工博